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ABSTRACT

This short paper presents a preliminary description of two new pro-
tocols for privacy-preserving disease susceptibility testing, follow-
ing the model proposed by Ayday et al. in [4]. We show that an
alternative encoding of the patient’s SNPs can simplify private com-
putations, and make patient-side computation on a trusted smartcard
device extremely efficient. To support larger tests, we propose a sec-
ond protocol variant based on secret sharing that is also simpler than
the original proposal, and relies on more efficient primitives.

1. INTRODUCTION

Over the last two decades, advances in Whole Genome Sequenc-
ing (WGS) — the suite of technologies used to determine the com-
plete DNA sequence of an organism — have been quite exceptional,
boasting a drop in costs, and an improvement in throughput, signif-
icantly faster than what Moore’s Law would predict [16, 17]. The
first full sequencing of a human genome was completed in 2003,
after a 13-year, $3B-worth research collaboration involving more
than 20 institutions worldwide—the “Human Genome Project” [18].
Numerous companies and research institutions have since then com-
peted in a race toward more and more affordable and accurate tech-
nologies, with prices plummeting to hundreds of thousands of dol-
lars already in 2008. The long-anticipated $1,000 threshold was
breached by the San Diego-based company Illumina early 2014.

Inexpensive WGS facilitates the collection of a large number of
digitized genomes and it is considered a key enabler of research in
genomics. For instance, it facilitates the discovery of correlations
between common genetic variants and traits, such as disease pre-
disposition or response to treatment. Also, full sequencing become
affordable, genome sequencing (and testing) will soon be available
to the masses, enabling the advent of a new era of personalized
medicine [13], where medical care can be tailored to every patient’s
genetic makeup. Genomic tests are already routinely used to pre-
dict patients’ response to several drugs and to help doctors assess
the right therapy for millions of HIV, cancer, and leukemia patients.
Naturally, the availability of a patient’s fully sequenced genome will
make it easier to run complex tests, in a matter of seconds, in sil-
ico (i.e, in computation), as opposed to more expensive and slower
in-vitro procedures.

Privacy Issues with WGS. Unsurprisingly, however, genomic data
sharing and dissemination raise a number of important privacy, eth-
ical, and legal concerns. The human genome not only uniquely and
irrevocably identifies its owner, but also contains information about
ethnic heritage, predisposition to diseases (e.g., Alzheimer’s, breast
and ovarian cancer, etc.) and conditions (including mental disorders,
such as schizophrenia), and many other phenotypic traits [6, 11, 12].
As the human genome contains detailed information about ethnicity

Emiliano De Cristofaro
University College London

e.decristofaro@ucl.ac.uk

and susceptibility to somatic and mental conditions, its disclosure is
often associated to the fear of eugenism —i.e., genetic discrimination
— which bears potentially dreadful implications on social dynamics
as well as hiring and health insurance practices. Due to its heredi-
tary nature, disclosing one’s genome essentially implies disclosing
the genomes of close relatives, as demonstrated, among others, by
a recent paper by Humbert et al. [14]. Masking sensitive portions
of the genome, e.g., mutations that indicate disease predisposition,
is essentially impossible as correlation (specifically, linkage dise-
quilibrium) between one or multiple genetic mutations can often be
used to reconstruct the “redacted” features [9].

Privacy-preserving Genome Testing. As a result, the research com-
munity has started to propose cryptographic techniques to support
privacy-preserving in-silico testing on whole genomes. Baldi et
al. [5] are the first to support private paternity, ancestry, and per-
sonalized medicine tests on whole genomes, and later develop the
GenoDroid framework to deploy privacy-friendly testing apps on
Android [8]. Ayday et al. [2, 3] also focus on the privacy of per-
sonal use of genomic data (e.g., in medical tests and personalized
medicine methods), and propose methods for protecting user’s ge-
nomic privacy by considering the statistical relationship between
the variants. Other recent relevant works include [7, 10, 15, 19].

Roadmap. This short paper builds on the work by Ayday, Raisaro,
Hubaux, and Rougemont [4], who present a protocol (which we
denote as ARHR13) for assessing genetic susceptibility to a given
disease in a privacy-preserving way. Susceptibility is determined
by computing a weighted average, based on the patient’s Single
Nucleotide Polymorphisms (SNPs)' and some importance factors
(aka markers) of each SNP (which possibly constitute the test’s
“secret sauce” and a pharmaceutical company’s trade secret).

Contributions. We revisit ARHR13’s proposal for and show that a
much simpler, yet equivalent, encoding can be used for the SNPs.
Based on this intuition, we propose two protocol variants: the first re-
lies on the user-side smartcard to process (part of) the computation,
and the second — on infrastructure servers. While these protocols
fulfill all requirements of the original proposal, they are simpler and
possibly significantly more efficient.

2. PRIVACY-PRESERVING DISEASE
SUSCEPTIBILITY TEST

We now review the ARHR13 protocol [4] and introduce the intu-
ition behind a simpler SNP encoding.

ISNPs occur when a single nucleotide (A, C, G, or T) differs between mem-
bers of the same species or paired chromosomes of an individual and are
sometimes associated with disease predisposition and response to treatment.



2.1 The ARHRI13 Protocol

In [4], Ayday, Raisaro, Hubaux, and Rougemont aim to privately
assess the susceptibility of a patient P to a disease X as a weighted
average involving, for each of patient’s SNP;, an importance fac-
tor, C;, and a SNP-dependent weight, Pr[X |SNP; € {0, 1, or 2}],
where 0, 1, 2 denote, respectively, the presence of the SNP in no,
one, or both chromosomes’:

o ZZ C—L . PI“[X|SNPZ‘]
B Ez Ci

Their model, illustrated in Figure 1, assumes the presence of a
Certified Institution (CI) which receives genetic samples, sequences
them, and produces an encrypted encoding of all possible SNPs. The
encrypted sequence is then stored on another (cloud-based) entity
called Storage and Processing Unit (SPU). Patients are issued with
a smartcard, that contains part of the secret key necessary to decrypt
the genetic information. When a test is to be performed by, e.g., a
doctor at a medical centre (denoted as MC), the MC initiates a pro-
tocol involving the SPU (holding the encrypted data), the subject’s
smartcard (holding a secret key), and the MC itself (which holds
the weights, also encrypted for trade secrecy reasons). The proto-
col is so that the results of the test are calculated over encrypted
genetic data. That is, neither the SPU nor the MC obtains the ex-
act genetic data of the patient, making them resilient to malicious
insiders, hackers, and data loss.

S

o Step 0: Cryptographic keys (public and secret keys) of each pa-
tient are generated and distributed to the patients. Symmetric keys
are also established between all parties.

e Step 1: The patient (P) provides a sample to the Certified Institu-
tion (CI) for sequencing.

e Step 2: The CI performs sequencing and encrypts patient’s real
SNP using a symmetric key kpc shared with P. It also encrypts pa-
tient’s real and potential SNP positions under P’s public key, using
the modified Paillier cryptosystem in [1] (which, besides additive
homomorphism, also supports proxy re-encryption). P’s public key
is denoted as (n, g, h = ¢), where the strong secret key is the fac-
torization of n = pq, the weak secret key is = € [1,n?/2]. The en-
cryption of a real SNP;, under P’s public key, results in E(SNP;, g*)
and E(SNPZ, g™). (The second ciphertext is needed to carry out ho-
momorphic operations later on.) Also, the CI encrypts an arbitrary
position v for every potential SNP, using kpc.

e Step 3: The CI sends the encrypted SNPs of P to the SPU

o Step 4: The patient’s weak secret key « is divided into two shares:
™ and @ (such that z = @M 4+ x(Q)). Then, M is given to
the SPU and 2 to the MC in the next step. Note that, thanks to
the proxy re-encryption property, an message encrypted under P’s
public key can be partially decrypted by the SPU using =D, and
then decrypted at the MC using 2 to recover the original message.

e Step 5: The MC wants to conduct a susceptibility test on P to a
particular disease X, and P provides the other part of his secret key
2 to the MC.

o Step 6: The MC tells the patient the positions of the SNPs required
for the test and obtains his consent to run the test.

e Step 7: The patient smartcard encrypts each requested position
using the symmetric key shared with the CI.

o Step 8: The patient sends the SPU the encrypted positions of the
requested SNPs.

o Step 9: The SPU receives each requested position in an encrypted
form. If the patient has a real SNP at the requested position, the
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Figure 1: ARHR13’s privacy-preserving susceptibility testing [4].

SPU retrieves the encrypted SNP at the corresponding (encrypted)
location. Otherwise, the SPU retrieves an encryption of vo. Then,
one of two possible scenarios occur:

(a) If the end-result is to be computed (by the MC), the retrieved
SNPs are re-encrypted at the SPU under the P’s public key. An
encrypted SNP (using a random r € [1,n/4]) is re-encrypted, under
the same public key, by using a new random number 71 € [1,n/4].

(b) If relevant SNPs are requested (by the MC), the SPU partially
decrypts the retrieved SNPs by using zW following a proxy re-
encryption protocol.

e Step 10: Re-encrypted (or partially decrypted) SNPs are sent to
the MC (by the SPU) in the same order as they are requested in Step
6.

e Step 11: One of two possible scenarios occur:

(a) If the end-result is to be computed (by the MC), the MC com-
putes P’s total susceptibility for disease X by using the homomor-
phic properties of the cryptosystem.

(b) If relevant SNPs are requested (by the MC), the MC decrypts
the message received from the SPU by using #® and recovers the
relevant SNPs.

If the end-result is computed by the MC:
o Step 12: The MC sends the encrypted end-result to the SPU.

o Step 13: The SPU partially decrypts the end-result using zM by
following a proxy re-encryption protocol and sends it back to the
MC.

o Step 14: The MC decrypts the message received from the SPU
by using z® and recovers the end-result.

2.2 A simpler encoding of SNPs

Our first observation is that each SNP; may take on 3 distinct
values namely O, 1 or 2. The original ARHR13 scheme encodes
those integers directly. On the contrary, we propose to encode each
SNP as a 3 bit binary vector, with a value of 1 corresponding to
the observed SNP, and the value of zero at other positions (for ex-
ample SNP; =0, 1 or 2 would be represented as 100, 010 or 001,
respectively). We then note that, for each binary indicator variable
I; € {0,1} representing a possible value at a certain SNP; = a,
we can associate a weight w; = C; - Pr[X|SNP; = alpha]. For a
test constant Z = . C};, the computation reduces to:

> wil;

S = 7



The encoding of SNPs as binary indicator variables removes the
need for non-linear operations such as squarings that were used
in the ARHR13 protocol. The computation is reduced to a simple
sum of pairs of secret values — one provided by the pharmaceutical
company representing the test (w;) and one provided by the SPU
and representing the genome of the user (/;). We note that the en-
codings of the SNP as SNP; € {0, 1,2} or as indicator variables
I; € {0, 1} contain exactly the same information — and given the
one in clear, the other may be produced.

Based on this intuition, in the next two sections, we present two
protocol variants that leverage the simpler but equivalent encoding
of the computation. The first protocol relies on the user-side smart-
card to process (part of) the computation, while the second uses
infrastructure servers.

3. PRIVATE TESTING PROTOCOL BASED
ON SMARTCARDS

We now present our first protocol for privacy-preserving suscep-
tibility testing, aiming to reduce the complexity of the ARHR13
protocol [4]. Specifically, we show how the computation on the pri-
vate SNPs may be facilitated by some user-held trusted hardware
such as a smartcard.

Assumptions. We assume that the patient’s SNPs are encrypted,
upon sequencing, by the Certified Institution (CI) using standard
symmetric encryption (e.g., AES in CBC mode, with a MAC using
an encrypt-then-MAC mode), under a key K. The genetic data is
also to be signed by the CI to certify its origin. Like in ARHR13,
the encrypted SNPs can be stored at the SPU or with the patient’s,
and may also be provided to the Medical Center (MC) during test
execution. Naturally, we recommend the enforcement of some ac-
cess control mechanism to protect data from unauthorized access
even though it is encrypted. Finally, we assume that K is stored on
a smartcard provided to the user.

Protocol Sketch. Our goal is to design a protocol that supports the
calculation of the disease predisposition, in such a way that genetic
data (i.e., the SNPs) is never in the clear outside the smartcard, and
the trade secrets of the MC (weights associated to the test) are also
kept confidential.

To facilitate the computation, the MC encrypts the weights using
an Elliptic Curve based El-Gamal (ECC) cryptosystem. Specifically,
each weight w; is encrypted as a tuple of elements E, [w;] = W; =
(kj-G,(z - k;j)-G+w; - H) where G and H are public generators
on the elliptic curve, k; are fresh secrets and « is the private key
only known to the MC. This El-Gamal variant exhibits a simple
additive homomorphism, in that pairwise point addition of cipher
texts yields an encryption of their sum (E; [a] 4+ FEx [b] = Ez[a+0]).

Whenever a computation is to be performed, the MC provides
the subject’s smartcard with the encrypted weights W; as well as
an encryption of zero (E[0]). The smartcard initializes a register
R with the a re-randomized encryption of zero, i.e., R = E[O]k,
for a random k. Then, for each value of W} and I; read from its
environment, it updates the register R as:

R =R+1;- W,

Since the value of I; is binary, each step of the computation either
involves a single elliptic curve point addition or none. Furthermore,
only the SNP positions for which W; weights have been provided
have to be considered for accumulation. In case only a subset of all
possible W; are provided by the pharmaceutical company, others
positions do not need to be processed.

When all weights W; have been processed their signature is
checked to ensure they represent a valid test. The accumulated value

R is then output from the smartcard, and sent to the MC for decryp-
tion. To decrypt a tuple R = (A, B), on input the private key z,
the MC computes H® = B — x - A. Since the discrete logarithm
problem is hard in the elliptic curve group, recovering the value of
S requires using precomputed tables of some maximal size of S.

Efficiency. As smartcards are resource-constraint devices, some
care needs to be taken to ensure the protocol runs in reasonable
time. Note that the protocol does not require any expensive ellip-
tic curve point multiplications, since it leverages the binary nature
of I; to only perform (cheaper) additions. Modern smartcards can
perform thousands of elliptic curve additions a second. Therefore,
we expect that the actual bottleneck comes from the I/0 of loading
the weights into the smartcard, as well as loading and decrypting
the I; values. The internal state of the smartcard comprises a sym-
metric key K, a handful of elements, and a couple of accumulated
hashes — all operations are performed in a streaming manner as data
is received.

Note that the MC only needs to store a key, and perform a single
decryption per test. The tables used for decryption can be re-used
even if the private key is rotated.

Finally, observe that the potentially large number of encrypted
SNPs, as well as the encrypted weights W, can be pre-fetched or
downloaded ahead of time, and can be stored on untrusted storage
devices.

4. SECRET-SHARING BASED PROTOCOL

We now describe our second protocol, which, based on secret-
sharing, further improves on the original ARHR13 solution.

Despite the few point additions, our first, smartcard-based, proto-
col may be too inefficient for large tests due to I/O and/or bandwidth
constraints of trusted devices or user equipment. Thus, we propose
a protocol that makes use of two distinct parties, assumed not to
collude with each other. These two parties can be embodied by the
SPU and the MC, which in the setting of the original protocol are
also assumed not to be colluding and entrusted with a similar burden
of computation.

Protocol Sketch. We assume that the CI produces and provides the
patient with a smartcard containing the private key y corresponding
to a public key y - G, where G is a public point on a secure elliptic
curve. The public key is then used to output an El-Gamal encrypted
stream of all indicator variables I; corresponding to the patient’s
SNPs. Each ciphertext is a pair of elements:

Uj=(kj-Gkj-y-G+1;-H),

where H is a random public point on the elliptic curve.

The weights w; are also encoded by the pharmaceutical company
as a sequence of random values u; and v; under the constraint that
uj +v; = w; mod g where g is the order of the group formed
by the elliptic curve. Knowledge of either sequences leaks no in-
formation about the secret weights w;. The sequences u; and v;
are distributed to SPU and MC respectively, who are trusted to not
collude to uncover w;.

The test computation proceeds as follows:

1. The encrypted SNPs, U}, are download by the SPU and the
MC.

2. The SPU and the MC use the shares of the secret weights to
compute the following sums over elliptic curve points:

AZZ’LLj'Uj B:ZUJ"U]',
J J



where addition denotes pairwise addition of two elliptic curve
points, i.e., the elements of the ciphertext.

3. The ciphertext A and B are sent to the patient’s smartcard and
used to compute D = A + B, which is decrypted using the
secret y inside the smartcard. This yields an element H* =
HX5 %'l and the test result S can be recovered through the
use of a lookup table, either at the patient or using a service
at the MC.

Observe that this protocol, compared to the first one presented
in Section 3, offers some advantages: since the secret in the smart-
card is only used at the end of the protocol, disease susceptibility
tests may be pre-computed once the tests are first designed, and then
decrypted when the smartcard is provided by the user as a way of
authorizing the disclosure of the result. Until that point, no genetic
information is leaked. Also note that the scheme may be general-
ized to any number of trusted parties and shares, or collapsed into
a simpler computation if, e.g., a pharmaceutical company acts as a
trusted service to facilitate the computation.

Efficiency. Both the SPU and the MC have to perform a number
of full elliptic curve multiplications to compute the cipher texts A
and B. However, the smart card (which is assumed to be resource-
constraint) only needs to perform a few additions and a single El-
Gamal decryption to decrypt the result, making this protocol more
efficient both in terms of computation and I/O.

5.  CONCLUSIONS

This short paper presented a preliminary description of two proto-
cols for privacy-preserving disease susceptibility testing, following
the model proposed in ARHR13 [4]. We introduced an alternative
but equivalent representation of SNP information, which allows the
ARHR protocol to be reduced to the problem of summing products
of secrets. This can either be done by relying on a smartcard at
the patient’s side, or using secret sharing on infrastructure servers.
Both protocols ensure that genetic information is always encrypted
when in transit or on general purpose hardware, and use a secret
within a smart card to unlock the result of the test. Since the nu-
merical domain of the test results is small, we used a simpler and
more efficient El-Gamal scheme on elliptic curves, instead of the
more expensive Paillier cryptosystem (which requiring computation
on N? = (p - ¢)* which are slow and produce large ciphertexts).
In future work, we will study the exact costs of both protocols and
their performance on appropriate embedded and server platforms.
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